Weekend Special Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code = simple70

Pass the Amazon Web Services AWS Certified Specialty MLS-C01 Questions and answers with ExamsMirror

Practice at least 50% of the questions to maximize your chances of passing.
Exam MLS-C01 Premium Access

View all detail and faqs for the MLS-C01 exam


439 Students Passed

90% Average Score

94% Same Questions
Viewing page 1 out of 10 pages
Viewing questions 1-10 out of questions
Questions # 1:

A Data Scientist is building a linear regression model and will use resulting p-values to evaluate the statistical significance of each coefficient. Upon inspection of the dataset, the Data Scientist discovers that most of the features are normally distributed. The plot of one feature in the dataset is shown in the graphic.

What transformation should the Data Scientist apply to satisfy the statistical assumptions of the linear

regression model?

Options:

A.

Exponential transformation

B.

Logarithmic transformation

C.

Polynomial transformation

D.

Sinusoidal transformation

Questions # 2:

A data engineer at a bank is evaluating a new tabular dataset that includes customer data. The data engineer will use the customer data to create a new model to predict customer behavior. After creating a correlation matrix for the variables, the data engineer notices that many of the 100 features are highly correlated with each other.

Which steps should the data engineer take to address this issue? (Choose two.)

Options:

A.

Use a linear-based algorithm to train the model.

B.

Apply principal component analysis (PCA).

C.

Remove a portion of highly correlated features from the dataset.

D.

Apply min-max feature scaling to the dataset.

E.

Apply one-hot encoding category-based variables.

Questions # 3:

A car company has dealership locations in multiple cities. The company uses a machine learning (ML) recommendation system to market cars to its customers.

An ML engineer trained the ML recommendation model on a dataset that includes multiple attributes about each car. The dataset includes attributes such as car brand, car type, fuel efficiency, and price.

The ML engineer uses Amazon SageMaker Data Wrangler to analyze and visualize data. The ML engineer needs to identify the distribution of car prices for a specific type of car.

Which type of visualization should the ML engineer use to meet these requirements?

Options:

A.

Use the SageMaker Data Wrangler scatter plot visualization to inspect the relationship between the car price and type of car.

B.

Use the SageMaker Data Wrangler quick model visualization to quickly evaluate the data and produce importance scores for the car price and type of car.

C.

Use the SageMaker Data Wrangler anomaly detection visualization to identify outliers for the specific features.

D.

Use the SageMaker Data Wrangler histogram visualization to inspect the range of values for the specific feature.

Questions # 4:

A data scientist for a medical diagnostic testing company has developed a machine learning (ML) model to identify patients who have a specific disease. The dataset that the scientist used to train the model is imbalanced. The dataset contains a large number of healthy patients and only a small number of patients who have the disease. The model should consider that patients who are incorrectly identified as positive for the disease will increase costs for the company.

Which metric will MOST accurately evaluate the performance of this model?

Options:

A.

Recall

B.

F1 score

C.

Accuracy

D.

Precision

Questions # 5:

A company uses camera images of the tops of items displayed on store shelves to determine which items

were removed and which ones still remain. After several hours of data labeling, the company has a total of

1,000 hand-labeled images covering 10 distinct items. The training results were poor.

Which machine learning approach fulfills the company’s long-term needs?

Options:

A.

Convert the images to grayscale and retrain the model

B.

Reduce the number of distinct items from 10 to 2, build the model, and iterate

C.

Attach different colored labels to each item, take the images again, and build the model

D.

Augment training data for each item using image variants like inversions and translations, build the model, and iterate.

Questions # 6:

A company is setting up a mechanism for data scientists and engineers from different departments to access an Amazon SageMaker Studio domain. Each department has a unique SageMaker Studio domain.

The company wants to build a central proxy application that data scientists and engineers can log in to by using their corporate credentials. The proxy application will authenticate users by using the company's existing Identity provider (IdP). The application will then route users to the appropriate SageMaker Studio domain.

The company plans to maintain a table in Amazon DynamoDB that contains SageMaker domains for each department.

How should the company meet these requirements?

Options:

A.

Use the SageMaker CreatePresignedDomainUrl API to generate a presigned URL for each domain according to the DynamoDB table. Pass the presigned URL to the proxy application.

B.

Use the SageMaker CreateHuman TaskUi API to generate a UI URL. Pass the URL to the proxy application.

C.

Use the Amazon SageMaker ListHumanTaskUis API to list all UI URLs. Pass the appropriate URL to the DynamoDB table so that the proxy application can use the URL.

D.

Use the SageMaker CreatePresignedNotebookInstanceUrl API to generate a presigned URL. Pass the presigned URL to the proxy application.

Questions # 7:

A company is building a predictive maintenance system using real-time data from devices on remote sites. There is no AWS Direct Connect connection or VPN connection between the sites and the company’s VPC. The data needs to be ingested in real time from the devices into Amazon S3.

Transformation is needed to convert the raw data into clean .csv data to be fed into the machine learning (ML) model. The transformation needs to happen during the ingestion process. When transformation fails, the records need to be stored in a specific location in Amazon S3 for human review. The raw data before transformation also needs to be stored in Amazon S3.

How should an ML specialist architect the solution to meet these requirements with the LEAST effort?

Options:

A.

Use Amazon Data Firehose with Amazon S3 as the destination. Configure Firehose to invoke an AWS Lambda function for data transformation. Enable source record backup on Firehose.

B.

Use Amazon Managed Streaming for Apache Kafka. Set up workers in Amazon Elastic Container Service (Amazon ECS) to move data from Kafka brokers to Amazon S3 while transforming it. Configure workers to store raw and unsuccessfully transformed data in different S3 buckets.

C.

Use Amazon Data Firehose with Amazon S3 as the destination. Configure Firehose to invoke an Apache Spark job in AWS Glue for data transformation. Enable source record backup and configure the error prefix.

D.

Use Amazon Kinesis Data Streams in front of Amazon Data Firehose. Use Kinesis Data Streams with AWS Lambda to store raw data in Amazon S3. Configure Firehose to invoke a Lambda function for data transformation with Amazon S3 as the destination.

Questions # 8:

A media company is building a computer vision model to analyze images that are on social media. The model consists of CNNs that the company trained by using images that the company stores in Amazon S3. The company used an Amazon SageMaker training job in File mode with a single Amazon EC2 On-Demand Instance.

Every day, the company updates the model by using about 10,000 images that the company has collected in the last 24 hours. The company configures training with only one epoch. The company wants to speed up training and lower costs without the need to make any code changes.

Which solution will meet these requirements?

Options:

A.

Instead of File mode, configure the SageMaker training job to use Pipe mode. Ingest the data from a pipe.

B.

Instead Of File mode, configure the SageMaker training job to use FastFile mode with no Other changes.

C.

Instead Of On-Demand Instances, configure the SageMaker training job to use Spot Instances. Make no Other changes.

D.

Instead Of On-Demand Instances, configure the SageMaker training job to use Spot Instances. Implement model checkpoints.

Questions # 9:

A Data Scientist is building a model to predict customer churn using a dataset of 100 continuous numerical

features. The Marketing team has not provided any insight about which features are relevant for churn

prediction. The Marketing team wants to interpret the model and see the direct impact of relevant features on

the model outcome. While training a logistic regression model, the Data Scientist observes that there is a wide

gap between the training and validation set accuracy.

Which methods can the Data Scientist use to improve the model performance and satisfy the Marketing team’s

needs? (Choose two.)

Options:

A.

Add L1 regularization to the classifier

B.

Add features to the dataset

C.

Perform recursive feature elimination

D.

Perform t-distributed stochastic neighbor embedding (t-SNE)

E.

Perform linear discriminant analysis

Questions # 10:

A data scientist must build a custom recommendation model in Amazon SageMaker for an online retail company. Due to the nature of the company's products, customers buy only 4-5 products every 5-10 years. So, the company relies on a steady stream of new customers. When a new customer signs up, the company collects data on the customer's preferences. Below is a sample of the data available to the data scientist.

Question # 10

How should the data scientist split the dataset into a training and test set for this use case?

Options:

A.

Shuffle all interaction data. Split off the last 10% of the interaction data for the test set.

B.

Identify the most recent 10% of interactions for each user. Split off these interactions for the test set.

C.

Identify the 10% of users with the least interaction data. Split off all interaction data from these users for the test set.

D.

Randomly select 10% of the users. Split off all interaction data from these users for the test set.

Viewing page 1 out of 10 pages
Viewing questions 1-10 out of questions
TOP CODES

TOP CODES

Top selling exam codes in the certification world, popular, in demand and updated to help you pass on the first try.